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Abstract. Using a method based on Lieb's theorems and SU(2) symmetry for the half-filled 
Hubbard model on a bipartite lattice with [AI = IBI = N (where IAl (IBI) is the number 
of sites in the A (B) sublattice), we show that the ground-state wave function has even (odd) 
symmetry with respect to the spin reversal operator when N is even (odd) for both U > 0 and 
U < 0 cases. These rigorous results hold in all dimensions without the necessity for a periodic 
boundary condition. 

The discovery of high-Z superconductivity renewed interest in the study of the ground-state 
properties of the Hubbard model. There has been an enormous amount of work in this field, 
but among them rigorous results and exact solutions are rare. For the one-dimensional case, 
exact results were obtained by Lieb and Wu [l]. For the higher-dimensional case, Yang 
and Zhang [2,3] discovered that the Hubbard model possesses simultaneously a pseudospin 
SU(2) symmetry and a true SU(2) symmetry. Lieb 141 obtained several theorems about the 
ground state. In this paper, a new rigorous result about the ground state of the half-filled 
Hubbard model is stated and proved. It is shown that the ground state has even symmetry 
under spin reversal when N is even and odd symmetry under spin reversal when N is odd. 

The Hubbard model on a finite lattice 2N IS defined by the Hamiltonian 

We consider the 2N lattice as a bipartite lattice with IAl = IBI = N ,  where IAl (IBI) 
is the number of sites in the A (B) sublattice. The spin operators are defined as 

and the Hamiltonian (1) has the SU(2) symmetry 

[S'H] = 0. (3) 
Then for an arbitrary eigenstate ?b of H with the energy E ,  we have 

HS*@ = ESi@. (4) 
If Si+ # 0, S*@ is a degenerate state of state @. On the other hand, Lieb's theorems point 
out that the ground state 11.6 of the Hamiltonian (1) on a bipartite lattice with IAl = IBI is 
non-degenerate and has S = 0 for both U > 0 and U i 0 cases. Then we obtain 

= 0. (5) 
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Of course, we believe that there exist other eigenstates that have the same property as pg, 
but now we only know 

It is well known that the Hubbard model has spin reversal symmetry. The spin reversal 
operator $, which changes all the signs of the electron spin at each, site is defined as 
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is  non-degenerate, and our interest is in the ground state. 

N N 
i? n tit, IO) = n c;f-, IO) (6) 

and its eigenvalues RS = f l .  Because the ground state is unique, it must have even 
symmetry (RS = 1) or odd symmetry (RS = -1) 

i = l  i=l 

&rg = &eg. (7) 
Exact diagonalization results [SI for small clusters have shown that when the number of 
sites is four, the ground state at half filling has even symmetry (R% = I), and when the 
number of sites is two or six, the ground state at half filling has odd symmetry (RS = - 1 ) .  
These results seem to indicate that the ground state for a half-filled Hubbard system on a 
bipartite lattice 2N with IAl = IBI = N has even (odd) symmetry with respect to the spin 
reversal operator when N is even (odd). The aim here is to confirm that this conjecture is 
correct. 

We know that for the large-U case the half-filled Hubbard Hamiltonian maps into a 
Heisenberg model with J = 4tZ/U. In the following, we first give the proof of the rigorous 
result on the Heisenberg model, and then apply the method to the Hubbard model. 

At the first step, we need a convention to define a appropriate set of basis vectors. For a 
2N lattice the dimension of the invariant subspace with S' = 0 is ( 2 N ) ! / ( N ! ) 2  . We order 
the sites in an arbitray way and decompose 2N sites into two groups that consist of N 
sites { X i ,  . . . , x k ,  . . . , X N }  and { Y I ,  . . . , Yk, . . . , Y N ) ,  where Xk, Yk denote the coordinates 
of the sites on the 2N lattice. When the two groups of sites are fixed, all the basis vectors 
1/1' with S' = 0 can be constructed by the following method. The first basis vector is 

4; = 1 / 1 t ( x l , .  . ., x k , .  . ., X N )  @ 1/1f(yls.. . s yk, .  . ., YN) 

where 1/1r(Xl ,  . . . , Xk, . . . , X N )  represents a state in which the spins of all electrons at the 
sites { X I ,  . . . , Xk, . . . , X N )  are up, and 1/1f(Yl, . . . , Yk, . . . , Y N )  represents a state in which 
the spins of all electrons at the sites { Y I , .  . ., Yk, .. ., YN) are down. Based on the basis 
vector &, we can construct a group of new basis vectors 4k(slltl) by changing the signs 
of the spin of the electrons at sites X,, and Yt, , i.e. 

@h(slltl) =1/1f - ' (Xl?  . . . I  xs)- l?  X,n+l ,  . . . I  X N )  @1/1f - ' (y l ,  ... > yrj-17 K,+I ,  ...) YN) 

@ 1/1i(X$,) @ 1/1+(Yt,) (SI. t~ = 1 , 2 ,  . . . I NI.  
If we change the signs of j electrons ( j  = I ,  2 , .  , . , N )  at the sites {xk) and Irk], we can 
obtain the j t h  group of new basis vectors 

=1/1? N - j  ( ~ ~ ~ ~ ~ ~ ~ ~ - l ~ ~ ~ ~ + l ~ ~ ~ ~ ~ ~ ~ ~ - l ~ ~ ~ ~ + l ~ ~ ~ ~ ~ ~ ~ ; - l ~ ~ ~ j + l ~ ~ ~ ~ ~ ~ N ~  

4i(s1,s*y. . . S S j I t l ,  ~ z V . .  .- t j )  

@ @r- j ( y l ,  . . ., yt,-l, y, ,+I,  . . . , Y,-I ,  y i ,+ l , .  . ., yij-1. & j + l , .  . . 3 YN) 

€3 1/11 ( X q  7 . . . I x ,  3 . . . , X,Tj 1 @ 1/1; (Yt!, . . . , r, , . . . I Y,; ) 
($1 # sz # .. . # S j , t l  # t* # ... # f j  = 1.2,  ..., N ) .  

The number of vectors in the j th  group is 

Dj = (7) ' .  
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Then the total number of the vectors constructed by this method is 
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which is equal to the dimension of the subspace with SL = 0, so the basis vectors constructed 
by this method are complete: When j = N ,  the basis vector in the j th  group is 

b: = @F(yl,. . . ?  ykv.. . I YN) @ @ f ( x l , .  . .s x k , .  . . r XN) 

so we have 

a.& = +:. (8) 

The ground state qS can then be written as @g = E:, C&‘; the coefficients 
Cl corresponding to the basis vector bL(sl, ..., sjlrl,. .., t j )  can be denoted as 
Aj(s1, .  . . , sjlti, . . . , t j ) .  Applying S- to the ground state &, from equation (5) we can 
obtain the following equations for the coefficients: 

(9) ~ A ’ ( S I . .  . . , s ~ - I .  sq+i.. . . , ~ j + i l t i ,  .~. ., fi, . . . , t j )  
9 

+ C A j + l ( s l ,  . . ..si,. . . , s j+ l l t l , ; .  . , fi,. . . , t j ,  U )  = 0 
U 

( j  =0,1,2 ,..., N - 1). 

Defining Aj as the sum of all the coefficients corresponding to the vectors in the j th  group, 
we have 

(10) A’(SI.& . . . , s j l t l ,  t z , .  . . , t j )  = (j!)’Aj 
Sl#Sz# ... #Sj I,#[*# ... i t j  

and 

c A j @ i , s z , .  . . , sjl t l , tz , .  . . , t j )  = (j!)’(N - j ) A j .  (1 1 )  
s ,#n#  ... #Xj+v+, t,#h# ... #ti 

Using equations (10) and (ll), summing equation (9) we obtain 

( N  - j ) A j  + ( j  + l)Aj+’ = 0 ( j  = 0, 1,. . . , N - 1). (12) 
Solving these equations (12), we obtain 

. N !  
A j  = (-1)) A’ ( j = 1 , 2  ,..., N ) .  

( N  - j ) ! j !  

Then 

AN = ( - l )NAo .  (14) 

Because the basis vector @, is chosen in an arbitrary way, we can obtain the same relation 
as equation (14) for any basis vectors with Sz = 0. From equation (8) and the above result 
we get 

a.& = (-1)N&. (15) 

Then we know that the ground state for the half-filled Hubbard Hamiltonian with large 
U (AF Heisenberg model) has even (odd) symmetry under the spin reversal if N is even 
(odd). In fact, this result is not new, this property follows from the ‘Marshall sign rule’ [6]. 
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Now we analyse the Hubbard model on a bipartite lattice 2N ( [ A [  = IB1) with U > 0 
0 . For such a Hamiltonian, the dimension of the subspace with Sz = 0 is much and U 

larger than that of Heisenberg model. The basis vectors can be written in the form 

where @ g ( X l ,  . . . , X,,,) representa the fact that at each site of the {XI, . . . , X,,,) there are 
two electrons with unparallel spin (doubly occupied state), and @; represents the fact that 
at each site of the ( Y I ,  . . . , Ym} there are no electrons (vacancy). For example 

@;(XI. X 2 )  = c$,&$L$c;2,c$2$lo,. (17) 

Notice that the vector $;(Xl,. . . , X,) @ # ( Y l , .  . . , Y,,,) has the property 

*@;(Xi, ..., Xm)@ @;(YI, ..., Y,) = (-I)'"@;(Xi, ..., Xm) @ @r(Yi, .. ., Ym) 
and 

(18) 

(19) 

The spin reversal property for the Hubbard model depends only on the relations of the 
coefficients of the basis vectors with the same doubly occupied and vacant state, and from 
equations (5)  and (19) one can find that the Hamiltonian matrix elements between states 
of different m does not affect the relation between the coefficients of these basis vectors. 
Thus for a group of basis vectors with the same doubly occupied and vacant state, we can 
still establish the equations for the coefficients by regarding CD as the basis vectors of the 
Heisenberg model on a 2N - 2m lattice. Using the same method, we obtain the following 
result for the half-filled Hubbard model: 

+ m  (S) @D (Xi, . . . , X,) @ ?bF(Yl, . . . , Y,) = 0. 

= (-l)y-l)N-yrg = (-l)N@E. (20) 

Then we know that the ground state for the half-filled Hubbard Hamiltonian with arbitrary 
U has even (odd) symmetly under the spin reversal if N is even (odd). 

In summary, based on Lieb's theorem we have shown that the ground-state wave 
function of the half-filled Hubbard model on a bipartite lattice with IAl = IBI has even (odd) 
symmehy with respect to the spin reversal operator when N is even (odd). this conclusion is 
in agreement with the exact diagonalization results for the two-, four-, and six-site Hubbard 
model [5]  and provides some new information about the Hubbard ground state. 

The authors are very grateful to T C Song for his help in this work. This work was supported 
by the National Natural Science Foundation of China. 
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